On Extended Finite Element Method (XFEM) for Modelling of Organ Deformations Associated with Surgical Cuts
نویسندگان
چکیده
The Extended Finite Element Method (XFEM) is a technique used in fracture mechanics to predict how objects deform as cracks form and propagate through them. Here, we propose the use of XFEM to model the deformations resulting from cutting through organ tissues. We show that XFEM has the potential for being the technique of choice for modelling tissue retraction and resection during surgery. Candidates applications are surgical simulators and image-guided surgery. A key feature of XFEM is that material discontinuities through FEM meshes can be handled without mesh adaptation or remeshing, as would be required in regular FEM. As a preliminary illustration, we show the result of XFEM calculation for a simple 2D shape in which a linear cut was made.
منابع مشابه
Modelling Surgical Cuts, Retractions, and Resections via Extended Finite Element Method
We introduce a new, efficient approach for modelling the deformation of organs following surgical cuts, retractions, and resections. It uses the extended finite element method (XFEM), recently developed in ”fracture mechanics” for dealing with cracks in mechanical parts. XFEM eliminates the computationally-expensive remeshing that would be required if the standard finite element method (FEM) wa...
متن کاملThe Effects of Newmark Method Parameters on Errors in Dynamic Extended Finite Element Method Using Response Surface Method
The Newmark method is an effective method for numerical time integration in dynamic problems. The results of Newmark method are function of its parameters (β, γ and ∆t). In this paper, a stationary mode I dynamic crack problem is coded in extended finite element method )XFEM( framework in Matlab software and results are verified with analytical solution. This paper focuses on effects of main pa...
متن کاملExperimental and Numerical Investigation of Rock Dynamic Fracture
Rapid development of engineering activities expands through a variety of rock engineering processes such as drilling, blasting, mining and mineral processing. These activities require rock dynamic fracture mechanics method to characterize the rock behavior. Dynamic fracture toughness is an important parameter for the analysis of engineering structures under dynamic loading. Several experimental...
متن کاملSimulation of Surgical Cutting Using a Progressive Cutting Scheme and Extended Finite Element Method
Accuracy and speed are two of the most important problems in the real-time Finite Element Method (FEM)-based simulations of surgical cutting [1][2]. While the latter can be gradually eased through GPU-based acceleration[3][4], the former hasn't been properly addressed even until recently. To enable realistic and accurate simulation, the cutting line should follow the exact movement of the user-...
متن کاملEstimation of Fracture path in the Structures and the Influences of Non-singular term on crack propagation
In the present research, a fully Automatic crack propagation as one of the most complicated issues in fracture mechanics is studied whether there is an inclusion or no inclusion in the structures. In this study The Extended Finite Element Method (XFEM) is utilized because of several drawbacks in standard finite element method in crack propagation modeling. Estimated Crack paths are obtained by ...
متن کامل